ELSEVIER

The first osmium(II), ruthenium(II) and iron(II) complexes of [3_{n}]cyclophanes ($n=2-4$): synthesis and electrochemical study ${ }^{\text {w }}$

Teizi Satou ${ }^{\text {a,b }}$, Ko Takehara ${ }^{\text {c }}$, Mihoko Hirakida ${ }^{\text {a,b }}$, Youichi Sakamoto ${ }^{\text {a,b }}$, Hiroyuki Takemura ${ }^{\text {c }}$, Hirokazu Miura ${ }^{\mathrm{b}, 1}$, Mie Tomonou ${ }^{\text {b }}$, Teruo Shinmyozu ${ }^{\text {a,* }}$
${ }^{a}$ Institute for Fundamental Research of Organic Chemistry (IFOC), Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
${ }^{\mathrm{b}}$ Graduate School of Science, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
${ }^{\text {c }}$ Graduate School of Science, Kyushu University, Ropponmatsu 4-2-1, Chuo-ku, Fukuoka 810-8560, Japan

Received 1 September 1998; received in revised form 9 October 1998

Abstract

$\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\left(\eta^{6}-\left[3_{n}\right] \mathrm{Cyclophane}\right) \mathrm{Ru}(\mathrm{II}) \quad\left[\mathrm{BF}_{4}\right]_{2}$ and corresponding $\mathrm{Os}(\mathrm{II}) \quad\left[\mathrm{PF}_{6}\right]_{2}$, as well as $\operatorname{bis}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{6}, \eta^{6}-\right.$ $\left[3_{n}\right]$ cyclophane $) \mathrm{Fe}(\mathrm{II}) \mathrm{Fe}(\mathrm{II}) \quad\left[\mathrm{PF}_{6}\right]_{2}$ ($\left[3_{n}\right]$ cyclophane $=\left[3_{2}\right](1,4)$ cyclophane 2, $\left[3_{3}\right](1,3,5)$ cyclophane 3, $\left[3_{4}\right](1,2,3,5)$ cyclophane 4, $\left[3_{4}\right](1,2,4,5)$ cyclophane 5) have been synthesized and characterized. The complexation shifts of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signals of the metal-bound aromatic protons $\left(\mathrm{H}_{\mathrm{b}}\right)$ are ca. $0.5-0.7$ and $0.1-0.4 \mathrm{ppm}$ for $\mathrm{Fe}(\mathrm{II})$ and $\mathrm{Ru}(\mathrm{II})$ complexes, respectively, whereas those of $\mathrm{Os}(\mathrm{II})$ complexes are ca. $-0.2-0.1 \mathrm{ppm}$. The complexation shifts of the ${ }^{13} \mathrm{C}$-NMR signals of the tertiary aromatic carbons of the metal-bound benzene ring are ca. $39-42$ and $45-50$ ppm for $\mathrm{Ru}(\mathrm{II})$ and Os (II) complexes, respectively. Thus the ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR chemical shifts of the metal-bound aromatic hydrogens and carbons are strongly influenced by the anisotropy effect of the metal. The $\mathrm{Ru}(\mathrm{II})$ complexes showed electrochemically reversible responses. In the case of $\mathrm{Os}(\mathrm{II})$ complexes, a well-defined cathodic peak was also observed, but the rising portion of the corresponding anodic peak was somewhat deviated from the ordinary CV profile. In both cases, the redox process was attributed to the two-electron one-step mechanism, $\mathrm{M}(\mathrm{II}) \rightleftharpoons \mathrm{M}(0)$ ($\mathrm{M}=\mathrm{Ru}$ and Os). An analysis of the redox properties of the $\mathrm{Ru}(\mathrm{II})$ and $\mathrm{Os}(\mathrm{II})$ complexes suggested that the Os(II)[34] $1,2,4,5$)cyclophane complex would be the most suitable subunit of an anticipated one-dimensional organometallic polymer. © 1999 Elsevier Science S.A. All rights reserved.

Keywords: Osmium; Ruthenium; Iron; Cyclophanes; π-Arene complexes; Cyclic voltammetry

1. Introduction

[m.n]Cyclophane (cyclophane $=\mathrm{CP}$) with two short $-\left(\mathrm{CH}_{2}\right)_{m}-$ and $-\left(\mathrm{CH}_{2}\right)_{n}$ - bridges $(m=2,3 ; n=2,3)$ has strong π-electron donating ability due to the transannular $\pi-\pi$ interaction of the facing aromatic rings. Thus the cyclophane can serve as either a monodentate or bidentate π-ligand for transition metals

[^0][1] and lanthanides [2]. In [m.n]CP, the [3.3]system has stronger π-electron donating ability than the [2.2] and [2.3]systems, as was demonstrated by the charge transfer (CT) interaction of intra- [3] and intermolecular CT complexes of [m.n]CP [4]. The [3.3]system also has an advantage that it is less strained than the corresponding [2.2]- and [2.3]systems [5]. Our recent study revealed that $\left[3_{n}\right] \mathrm{CP}(n=2-6)$ exhibits much stronger CT interaction than the corresponding $\left[2_{n}\right]$ homolog ($n=2-6$) [6] mainly because of the effective hyperconjugation between the benzyl hydrogens and the benzene rings due to the conformation favorable for $\pi-\sigma$ interaction in the former [7]. The bending of the benzylic methylene groups out of the plane of the attached benzene ring
was expected to be 3.4° for $\left[{ }_{6}\right] \mathrm{CP} 1$ [8] but 20° (20° by the X-ray structural analysis [6b]) for the corresponding [26]homolog by the semiempirical AM1 calculations [9]. Therefore the $\left[3_{n}\right] C P$ is expected to be more suitable ligand than the corresponding $\left[2_{n}\right]$ homolog. A large number of the complexes of $\mathrm{Fe}(\mathrm{II})-$ and $\mathrm{Ru}(\mathrm{II})-\left[2_{n}\right] \mathrm{CP}$ have been synthesized so far [2], but few reports on the π-arene metal complexes of $\left[3_{n}\right] \mathrm{CP}$ have been appeared because of the much easier availability of $\left[2_{n}\right] \mathrm{CP}$, especially of $\left[2_{2}\right](1,4) \mathrm{CP}$ which is commercially available, than the corresponding $\left[3_{n}\right]$ homolog. Now $\left[3_{n}\right]$ CP becomes much more readily available by the progress made in their synthesis $[7,10]$.

In the pioneering work of the π-arene metal complexes of cyclophane, Boekelheide et al. extensively studied the synthesis, structure, and electrochemical properties of various mono- and dinuclear $\mathrm{Ru}(\mathrm{II})$ complexes of $\left[2_{n}\right] \mathrm{CP}$ ($n=2-6$) as subunits of electrically conducting polymer [11]. As an important step toward this goal, they synthesized and characterized the mixed-valence ion of $\operatorname{bis}\left(\eta^{6}\right.$ $\left.\mathrm{C}_{6} \mathrm{Me}_{6}\right)\left[\eta^{4}, \eta^{6}-\left[2_{4}\right](1,2,4,5) \mathrm{CP}\right] \mathrm{Ru}(0) \mathrm{Ru}(\mathrm{II}) \quad\left[\mathrm{BF}_{4}\right]_{2} \quad\left(\mathrm{C}_{6}-\right.$ $\mathrm{Me}_{6}=$ hexamethylbenzene) [11g]. The $\mathrm{Fe}(\mathrm{II})-\left[2_{2}\right](1,3)$ and $\left[2_{2}\right](1,4) \mathrm{CP}$ complexes were prepared by Boekelheide et al. [12], Koray [13] and Rosenblum et al. [14]. In contrast to $\mathrm{Ru}-\mathrm{CP}$ complexes, a limited number of Os complexes have been known; Tocher et al. synthesized and studied the structure of mononuclear $\mathrm{Os}(\mathrm{II})$ complexes, $\left[\operatorname{Os}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\left(\eta^{6}-\left[2_{2}\right](1,4) \mathrm{CP}\right]\left[\mathrm{BF}_{4}\right]_{2}\right.$, and trinuclear complexes, $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Os}\left(\eta^{6}, \eta^{6}-\left[2_{2}\right](1,4) \mathrm{CP}\right) \mathrm{Ru}\left(\eta^{6}\right.\right.$, $\left.\eta^{6}-\left[2_{2}\right](1,4) \mathrm{CP}\right) \mathrm{Os}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)\left[\mathrm{BF}_{4}\right]_{6}$ [15]. Bandy et al. reported the synthesis and structure of $\mathrm{Os}(0)$ complexes, represented by $\left[\mathrm{Os}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\left(\eta^{4}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right.$] [16]. However, no electrochemical study of the Os-cyclophane complexes has been reported so far.

Here we describe the first synthesis of the $\mathrm{Ru}(\mathrm{II})$, $\mathrm{Os}(\mathrm{II})$ and $\mathrm{Fe}(\mathrm{II})$ complexes of $\left[3_{n}\right] \mathrm{CP} \quad\left(\left[3_{n}\right] \mathrm{CP}=\right.$ $\left[3_{2}\right](1,4) \mathrm{CP} \quad \mathbf{2}, \quad\left[3_{3}\right](1,3,5) \mathrm{CP} \quad \mathbf{3}, \quad\left[3_{4}\right](1,2,3,5) \mathrm{CP} \quad \mathbf{4}$, $\left.\left[3_{4}\right](1,2,4,5) \mathrm{CP} 5\right)$, and electrochemical properties of $\mathrm{Ru}(\mathrm{II})$ and $\mathrm{Os}(\mathrm{II})$ complexes. A final goal of this fundamental study is directed toward the development of new electrically conducting and magnetic materials first proposed by Boekelheide [1, 11b].

1

2

3

4

5

2. Results and discussion

2.1. Synthesis

Gill and Mann developed a general synthetic method of cyclopentadienyl (cp) capped (η^{6}-arene) Fe (II) complexes by the visible-light irradiation of $\left(\eta^{5}-\mathrm{cp}\right)\left(\eta^{6}-p\right.$ xylene) Fe (II) cations in the presence of suitable ligands [17a], and they demonstrated that this method was applicable to the synthesis of the $\left(\eta^{5}-\mathrm{cp}\right)\left(\eta^{6}-\right.$ $\left.\left[2_{2}\right](1,4) \mathrm{CP}\right) \mathrm{Fe}(\mathrm{II})$ complex [17b]. Alternatively, the AlCl_{3} catalyzed ligand exchange between arenes and ferrocene, first described by Nesmeynov et al. [18] and later elaborated by Sutherland et al. [19], has been used to prepare a wide range of complexes of the type $\left[\left(\eta^{5}-\mathrm{cp}\right)\left(\eta^{6}\right.\right.$-arene $\left.) \mathrm{Fe}(\mathrm{II})\right] \mathrm{X}^{-}$, where X is PF_{6} or BF_{4}. The use of $\left[2_{n}\right] \mathrm{CP}$ as a ligand in the photolysis allowed the preparation of mono-cp capped complexes such as $\left[2_{2}\right](1,3)[12 \mathrm{a}]$ and $\left[2_{2}\right](1,4) \mathrm{CP}$ complexes [12b], whereas di-cp capped complexes of $\left[2_{2}\right](1,3) \quad[12 \mathrm{a}]$ and $\left[2_{2}\right](1.4) \mathrm{CP}[12 \mathrm{~b}, 13]$ were predominantly formed when more than 2 M equivalents of ferrocene were used in the ligand exchange. Relatively unstable $\operatorname{bis}\left(\eta^{6}\right.$ $\left.\left[2_{2}\right](1,4) \mathrm{CP}\right) \mathrm{Fe}(\mathrm{I})$ complexes were synthesized in a similar way [14]. An application of this ligand exchange to $\left[3_{n}\right] C P \quad 2-4 \quad$ afforded $\operatorname{bis}\left(\eta^{5}-\mathrm{cp}\right)\left(\eta^{6}, \eta^{6}-\left[3_{n}\right] \mathrm{CP}\right) \mathrm{Fe}(\mathrm{II})-$ $\mathrm{Fe}(\mathrm{II})\left[\mathrm{PF}_{6}\right] \mathbf{8}-\mathbf{1 0}$ as tan crystals in good yields (Scheme 1).

Bennett et al. developed a general synthetic method of (η^{6}-arene $\left.{ }^{1}\right)\left(\eta^{6}\right.$-arene $\left.{ }^{2}\right) \mathrm{Ru}$ (II) complexes by treatment of $\left[\mathrm{RuCl}_{2}\left(\eta^{6} \text {-arene }{ }^{1}\right)\right]_{2}$ with acetone and AgBF_{4}, followed by $\mathrm{CF}_{3} \mathrm{COOH}$ and arene ${ }^{2}$ [20]. Applying the method to $\left[2_{n}\right] C P$ ligands, Boekelheide et al. prepared various $\mathrm{Ru}(\mathrm{II})$ complexes of $\left[2_{n}\right] \mathrm{CP}$ of the type (η^{6} $\left.\mathrm{C}_{6} \mathrm{Me}_{6}\right)\left(\eta^{6}-\left[2_{n}\right] \mathrm{CP}\right) \mathrm{Ru}(\mathrm{II}) \quad[11 \mathrm{a}, \mathrm{b}, \mathrm{d}, \mathrm{e}, \mathrm{f}] \quad$ and $\operatorname{bis}\left(\eta^{6}-\right.$ $\left.\mathrm{C}_{6} \mathrm{Me}_{6}\right)\left(\eta^{6}, \eta^{6}-\left[2_{n}\right] \mathrm{CP}\right) \mathrm{Ru}(\mathrm{II}) \mathrm{Ru}(\mathrm{II}) \quad[11 \mathrm{c}, \mathrm{g}, \mathrm{h}, \mathrm{i}, \mathrm{j}]$. The corresponding $\left[3_{n}\right] \mathrm{CP}$ complexes of the former type, $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\left(\eta^{6}-\left[3_{n}\right] \mathrm{CP}\right) \mathrm{Ru}(\mathrm{II})\right]\left[\mathrm{BF}_{4}^{-}\right]_{2} \mathbf{1 3}-\mathbf{1 6}$, were prepared by the reaction of $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}(\mathrm{III})(\text { acetone })_{3}\right]$, which was derived from $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2}\right]_{2} \mathbf{1 2}$ and acetone, and the corresponding $\left[3_{n}\right] C P$ (Scheme 2). The $\operatorname{bis}\left(\eta^{6}-\left[3_{2}\right](1,4) \mathrm{CP}\right) \mathrm{Ru}($ II $)$ complex $\mathbf{1 9}$ was also prepared in a similar way via dinuclear $\mathrm{Ru}(\mathrm{II})$ complex 18 (Scheme 3).
In principle, the $\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\left(\eta^{6}\right.$-arene $) \mathrm{Os}(\mathrm{II})$ complexes can be prepared by the reaction of $\left[\left(\eta^{6}\right.\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Os}(\mathrm{III})(\text { acetone })_{3}\right]^{2+}$ with arenes in $\mathrm{CF}_{3} \mathrm{COOH}$ as was reported by Mann et al. [21]. Tocher et al. synthesized $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\left(\eta^{6}-\left[2_{2}\right](1,4) \mathrm{CP}\right) \mathrm{Os}(\mathrm{II})\right]\left[\mathrm{BF}_{4}\right]_{2}$ from $\left[\left(\eta^{6}-\right.\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{OsCl}_{2}\right]_{2}$ via the acetone solvate [15] according to the Bennet procedure [20]. They also prepared trinuclear heterometallic complex $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Os}\left(\eta^{6}, \eta^{6}\right.\right.$ $\left.\left.\left[2_{2}\right](1,4) \mathrm{CP}\right) \mathrm{Ru}\left(\eta^{6}, \eta^{6}-\left[2_{2}\right](1,4)-\mathrm{CP}\right) \mathrm{Os}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right] \quad\left[\mathrm{BF}_{4}\right]_{6}$ by a similar procedure [15a]). The $\mathrm{Os}(\mathrm{II})$ complexes of [3_{n}]CP 21-24 were prepared as PF_{6}^{-}salts according to the Mann procedure [21] by the reaction of $\left(\eta^{6}\right.$ -

Scheme 1. Synthesis of $\mathrm{Fe}(\mathrm{II})$ complexes of $\left[3_{n}\right]$ cyclophanes $\mathbf{8}-\mathbf{1 0}$ and their ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data of the aromatic protons ($270 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$ acetone). The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data of $\mathbf{1 1}$ are also shown as a reference. The $\Delta \delta$ shows the complexation shift $\left[\Delta \delta=\delta\right.$ (free ligand in $\left[\mathrm{D}_{6}\right]$ acetone) $-\delta$ (complex in [D_{6}]acetone).
$\left.\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Os}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{Cl}_{2} \quad 20$, which was derived from $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{OsCl}_{6}$ [22], with acetone followed by the corresponding $\left[3_{n}\right] \mathrm{CP}$ (Scheme 4). All $\mathrm{Fe}(\mathrm{II}), \mathrm{Ru}(\mathrm{II})$ and $\mathrm{Os}(\mathrm{II})$ complexes thus prepared were air-stable in the solid state, but the $\mathrm{Fe}(\mathrm{II})$ complexes underwent slow decomposition on exposure to air in solution.

2.2. Spectral properties

The chemical shifts of the aromatic proton signals of the $\mathrm{Fe}(\mathrm{II})$ complexes $\mathbf{8}-\mathbf{1 0}$ in $\left[\mathrm{D}_{6}\right]$ acetone, $\mathrm{Ru}(\mathrm{II})$ complexes $13-16$ and 19 in $\mathrm{CD}_{3} \mathrm{CN}$ and $\mathrm{Os}(\mathrm{II})$ complexes $\mathbf{2 1}-\mathbf{2 4}$ in $\mathrm{CD}_{3} \mathrm{CN}$ are shown in Schemes $1-4$, respectively. The $\Delta \delta$ denotes the complexation shift [23]: $\Delta \delta=\delta$ (free cyclophane) $-\delta$ (complex) where the δ values of a free cyclophane and its complex are measured in the same solvent. The $\Delta \delta$ was $0.46-0.66 \mathrm{ppm}$ (8, 0.66; 9, 0.46; 10, 0.50 ppm) for the $\mathrm{Fe}(\mathrm{II})$-bound aromatic protons H_{b} of the di-cp capped $\mathrm{Fe}(\mathrm{II})$ complexes $\mathbf{8}-10$, and the largest $\Delta \delta$ value (0.66) was observed in the complex with the least bridge 8 , and the value was comparable to that of the corresponding [2.2]homolog 11. Similar higher field shifts of the metalbound aromatic protons H_{b} were observed in the ${ }^{1} \mathrm{H}$ NMR spectra of the $\mathrm{Ru}(\mathrm{II})$ complexes ($\mathbf{1 3}, \Delta \delta=0.36$; 14, $0.08 ; 15,0.15 ; 16,0.32 \mathrm{ppm}$), but no correlation between the magnitude and the number of the bridges was observed. The compound 17 showed larger $\Delta \delta$ values for both H_{b} and H_{c} protons than its higher homolog 13. The dicyclophane capped complex 19 showed the largest $\Delta \delta$ value (0.71 ppm) and this was
attributed to an enhanced diamagnetic ring current of the facing cyclophanes. The aromatic proton signals H_{c} of the Ruunbound deck shifted downfield but the magnitude was almost the same ($\mathbf{1 3}, \Delta \delta=-0.31 ; \mathbf{1 4},-$ $0.36 ; 15,-0.32 ; 16,-0.20 \mathrm{ppm})$. Similarly the H_{a} proton signals of $\mathbf{1 3 - 1 7}$ appeared at similar positions and no appreciable difference was observed.
In sharp contrast to the ${ }^{1} \mathrm{H}$-NMR properties of the $\mathrm{Ru}(\mathrm{II})$ complexes, complexation of the $\mathrm{Os}(\mathrm{II})$ metal caused the metal-bound H_{b} protons to shift slightly downfield except for 21 where the effect was almost zero (21, $\Delta \delta=0.08 ; \mathbf{2 2},-0.20 ; \mathbf{2 3},-0.13 ; \mathbf{2 4},-0.05$ $\mathrm{ppm})$. The $\mathrm{Os}(\mathrm{II})$-unbound aromatic protons H_{c} showed further down field shifts (21, $\Delta \delta=-0.39 ; \mathbf{2 2}$, $-0.41 ; \mathbf{2 3},-0.39 ; \mathbf{2 4},-0.30 \mathrm{ppm})$. A similar trend was also observed in the H_{a} proton signals. Thus the shielding effect of the $\mathrm{Ru}(\mathrm{II})$ metal was more significant than that of the $\mathrm{Os}(\mathrm{II})$ metal [21a].
The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data of the $\mathrm{Ru}(\mathrm{II})$ and $\mathrm{Os}(\mathrm{II})$ complexes are shown in Scheme 5. Binding of the metal(II) ions to cyclophane greatly enhances upfield shifts of the metal-bound aromatic tertiary $\left(\mathrm{C}_{t}\right)$ and quaternary $\left(\mathrm{C}_{\mathrm{q}}\right)$ carbon signals, whereas metal-unbound aromatic carbon signals shift to slightly down field as compared with the corresponding carbon signals of the free cyclophane ligand. The complexation shifts $[\Delta \delta=\delta$ (free cyclophane in CDCl_{3}) $-\delta$ (complex in $\mathrm{CD}_{3} \mathrm{CN}$) of the tertiary and quaternary aromatic carbons are ca. 39-42 and $16-24 \mathrm{ppm}$ for the $\mathrm{Ru}(\mathrm{II})$ complexes, respectively, whereas they are ca. $45-50$ and $21-28 \mathrm{ppm}$ for the $\mathrm{Os}(\mathrm{II})$ complexes. The magnitude of the complexation

Scheme 2. Synthesis of $\mathrm{Ru}(\mathrm{II})$ complexes of $\left[3_{n}\right]$ cyclophanes $\mathbf{1 3 - 1 6}$ and their ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data of the aromatic protons ($270 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$). The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data of 17 are also shown as a reference. The $\Delta \delta$ shows the complexation shift $\left[\Delta \delta=\delta\right.$ (free ligand in $\mathrm{CD}_{3} \mathrm{CN}$) $-\delta$ (complex in $\mathrm{CD}_{3} \mathrm{CN}$).
shifts is almost independent on the number of the bridges but slightly dependent on the metal; the shift is more significant in the $\mathrm{Os}(\mathrm{II})$ complexes than in the corresponding $\mathrm{Ru}(\mathrm{II})$ complexes. Thus both ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR data suggested that the chemical shifts of the aromatic protons and carbons of the complexes were influenced by the anisotropy effect of the metal.

For the determination of the molecular weight of the metal complexes, FAB MS in m-nitrobenzyl alcohol as a matrix proved to be very useful, and the $\mathrm{M}-\left[\mathrm{BF}_{4}^{-}\right]$ peaks for the $\mathrm{Ru}(\mathrm{II})$ complexes as well as $\mathrm{M}-\left[\mathrm{PF}_{6}^{-}\right]$ peaks for the Fe (II) and Os (II) complexes were clearly observed in each case. In the IR spectra (KBr) of the $\mathrm{Ru}(\mathrm{II})$ and $\mathrm{Os}(\mathrm{II})$ complexes, new bands with medium intensities appeared in the region of $3030-3100 \mathrm{~cm}^{-1}$ and these bands may be assigned to the $\mathrm{C}-\mathrm{H}$ stretching frequencies of the metal-bound benzene rings.

2.3. Electrochemical properties

Fig. 1 shows the cyclic voltammograms (CVs) of the $\mathrm{Ru}(\mathrm{II})$ complexes $13(n=2), 14(n=3), \mathbf{1 5}(n=4)$ and $16(n=4)$ in $\mathrm{CH}_{3} \mathrm{CN} / 0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NClO}_{4}$ solution at the potential scan rate of $0.1 \mathrm{~V} \mathrm{~s}^{-1}$. The cathodic peak P_{c} appeared at $-1.07,-1.16,-1.19$, and -1.12 V (vs. $\mathrm{Ag} \mid \mathrm{AgNO}_{3}$) for 13-16, respectively. The corresponding anodic peak P_{a} was very small at this potential scan rate, but the peak current of $P_{\mathrm{a}}, I_{\mathrm{pa}}$, gradually increased with increasing potential scan rate (Fig. 2) and the $I_{\mathrm{pa}} / I_{\mathrm{pc}}$ ratio approached unity at higher scan rates for
the CVs of $\mathbf{1 3 - 1 5}$ (Fig. 3). Fig. 4 denotes the CVs at the potential scan rate of $6.4 \mathrm{~V} \mathrm{~s}^{-1}$. The redox potentials $E_{1 / 2}$ obtained as the mid-point potential of the cathodic and anodic potentials were $-1.04,-1.13$, -1.15 and -1.08 V for $\mathbf{1 3}-\mathbf{1 6}$, respectively.
In the CVs of a series of $\left(\eta^{6}-\mathrm{C}_{6} \mathrm{Me}_{6}\right)\left(\eta^{6}-\left[2_{n}\right] \mathrm{CP}\right) \mathrm{Ru}(\mathrm{II})$ complexes $\left(\left[2_{n}\right] \mathrm{CP}=\left[2_{6}\right](1,2,3,4,5,6) \mathrm{CP},\left[2_{4}\right](1,2,3,5) \mathrm{CP}\right.$, $\left.\left[2_{4}\right](1,2,4,5) \mathrm{CP}\right)$ [11d], Boekelheide et al. reported that the $\mathrm{Ru}(\mathrm{II})$ was reduced to $\mathrm{Ru}(0)$ with the two-electron one-step mechanism at potential range from -0.5 to -1.0 V (vs. $\left.\mathrm{Ag} \mid \mathrm{AgNO}_{3}\right)[11 \mathrm{~d}, \mathrm{f}, \mathrm{g}]$. Even in the case of a consecutive one-electron twostep reduction mechanism $(\mathrm{Ru}(\mathrm{II}) \rightarrow \mathrm{Ru}(\mathrm{I})$ and $\mathrm{Ru}(\mathrm{I}) \rightarrow \mathrm{Ru}(0))$, the two reduction peaks were reported to appear in a close proximity [24] as in the case of the $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{Me}_{6}\right)\left(\eta^{6}\right.\right.$ $\left.\left[2_{4}\right](1,2,3,5) \mathrm{CP}\right) \mathrm{Ru}(\mathrm{II})$ complex [11d]. Therefore we attributed the cathodic peak P_{c} and the corresponding anodic peak P_{a} to the reduction of $\mathrm{Ru}(\mathrm{II})$ to $\mathrm{Ru}(0)$ and to the reoxidation of $\mathrm{Ru}(0)$ to $\mathrm{Ru}(\mathrm{II})$, respectively as shown in Scheme 6.
As discussed by Nicholson and Shain [25], the change in peak current ratio, $I_{\mathrm{pa}} / I_{\mathrm{pc}}$, is characteristic of the reversible electrochemical reaction followed by irreversible chemical reaction ($E_{r} C_{i}$ mechanism) which produces an electrochemically inactive final product P.
$\mathrm{Ru}(\mathrm{II})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ru}(0)$ (Electrochemical process)
$\mathrm{Ru}(0) \xrightarrow{k_{f}} \mathrm{P} \quad$ (Chemical process)
By adapting this mechanism to the present case, we expected that the $\mathrm{Ru}(0)$ species was not so stable and

Scheme 3. Synthesis of $\mathrm{Ru}(\mathrm{II})$ complex 19 and its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data of the aromatic protons ($270 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$). The $\Delta \delta$ shows the complexation shift $\left[\Delta \delta=\delta\right.$ (free ligand in $\mathrm{CD}_{3} \mathrm{CN}$) $-\delta$ (complex in $\mathrm{CD}_{3} \mathrm{CN}$).
gradually converted into the electrochemically inactive form. Such a mechanism incorporating the chemical process was consistent with the reported mechanism for the similar $\mathrm{Ru}(\mathrm{II})$ complexes $[11 \mathrm{~d}, \mathrm{~h}]$. Based on the analysis of Nicholson and Shain [25], we estimated the rate constants (k_{f}) of the chemical process in Eq. (2) to be $3.4,1.2,1.6$ and $0.15 \mathrm{~s}^{-1}$ for $\mathbf{1 3 - 1 6}$, respectively (Fig. 5) [26,27]. This result indicated that the decomposition rate of the $\mathrm{Ru}(0)$ to P was much faster at $\mathbf{1 3}$ than at $\mathbf{1 4}$ and 15 , and was much slower at $\mathbf{1 6}$ than at 14 and 15. The CVs of the $\mathrm{CH}_{3} \mathrm{CN}$ solutions of the $\mathrm{Ru}(\mathrm{II})$ free ligands $\mathbf{2}-\mathbf{5}$ did not show any redox peak in the potential range from +1.0 to -2.0 V .

The Os(II) complexes $21(n=2)$, $22(n=3), 23(n=$ 4) and $24(n=4)$ showed similar CV responses to the $\mathrm{Ru}\left(\right.$ II) complexes in $\mathrm{CH}_{3} \mathrm{CN} / 0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NClO}_{4}$ solution at the potential scan rate of $0.1 \mathrm{~V} \mathrm{~s}^{-1}$. The rising portion of the anodic peak was somewhat deviated from the ordinary CV profiles and the peak shifted to the anodic side (Fig. 6). Although this shift made it difficult to analyze quantitatively the redox potential $E_{1 / 2}$ and the decomposition rate constant k_{f} of the $\mathrm{Os}(\mathrm{II})$ complexes, the cathodic peak potential E_{pc} appeared at $-1.15,-1.26,-1.32$ and -1.13 V (vs. $\mathrm{Ag} \mid \mathrm{AgNO}_{3}$) for 21-24, respectively. Fig. 7 denotes the CVs at the potential scan rate of $6.4 \mathrm{~V} \mathrm{~s}^{-1}$. The $I_{\mathrm{pa}} / I_{\mathrm{pc}}$ ratio of the $\mathrm{Os}(\mathrm{II})$ complexes was larger than that of the corresponding $\mathrm{Ru}(\mathrm{II})$ complexes at a given scan rate. This result indicated that the $\operatorname{Os}(0)$ state was more stable to the chemical decomposition than the corresponding $\mathrm{Ru}(0)$ state. The E_{pc} values suggested that $\left[3_{2}\right](1,4) \mathrm{CP}$ and $\left[3_{4}\right](1,2,4,5) \mathrm{CP}$ moieties in 13 and 16, respectively, could take boat-shaped geometries required for η^{4}-bonding more easily than $\left[3_{3}\right](1,3,5) \mathrm{CP}$ and $\left[3_{4}\right](1,2,4,5) \mathrm{CP}$ moieties in $\mathbf{1 4}$ and $\mathbf{1 5}$, respectively, since the benzene ring of $\left[3_{2}\right](1,4) \mathrm{CP} 2$ has a boatshaped geometry with the distortion angles being 6.4° [5b] as shown in Scheme 6, and $\left[3_{4}\right](1,2,4,5) \mathrm{CP} 5$ has a preformed, near-optimum boat-shaped geometry to bind $\eta^{4}[28]$. A similar phenomenon was reported in the CVs of the $\mathrm{Ru}(\mathrm{II})$ complexes of a series of [2_{n}]cyclophanes [11d]. The boat-type deformation is
favorable for the formation of the $\eta^{4}-\mathrm{M}(0)$ state from the $\eta^{6}-\mathrm{M}(\mathrm{II})$ state, and this geometrical change is reported to be the controlling factor affecting the reduction potential of $\mathrm{Ru}(\mathrm{II})$ to $\mathrm{Ru}(0)$ state [11d]. The two-electron one-step mechanism and the geometrical change accompanying the reduction of $\mathrm{Ru}(\mathrm{II})$ to $\mathrm{Ru}(0)$ were well established [29], and some $\mathrm{Ru}(0)$ complexes were isolated and characterized [11f, 29]. Smaller E_{pc} values of 16 and 24, both of which contained $\left[3_{4}\right](1,2,4,5) \mathrm{CP} 5$ as the ligand, and the slowest decomposition rate of $\mathrm{Ru}(0)$ state in 16, as well as slower decomposition rate of the $\mathrm{Os}(0)$ state than the corresponding $\mathrm{Ru}(0)$ state suggested that the best metal-ligand combination was the $\operatorname{Os}(\mathrm{II})$ and $\left[3_{4}\right](1,2,4,5) \mathrm{CP} 5$ for the subunit of anticipated metal polymer.
The E_{pc} value may be affected not only by the molecular geometry of the ligand but by electron donating ability of the ligand; the benzene ring with preformed boat-shaped geometry for η^{4}-bonding of $\mathrm{M}(0)$ state shifts the E_{pc} to more positive potentials, whereas the strong electron donating ligand may stabilizes the $\mathrm{M}(\mathrm{II})$ state more strongly than the $\mathrm{M}(0)$ state and, therefore, shifts the E_{pc} to more negative potentials. The E_{pc} values of parent $\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\left(\eta^{6}-\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}(\mathrm{II})\left[\mathrm{BF}_{4}\right]_{2} 25(-1.02 \mathrm{~V}), \mathbf{1 3}(-1.07 \mathrm{~V})$ and $19\left(-1.19 \mathrm{~V}\right.$ vs. $\left.\mathrm{Ag} / \mathrm{AgNO}_{3}\right)$, shown in Fig. 8, suggested that the $\Delta E_{\mathrm{pc}}(-0.12 \mathrm{~V})$ between 19 and 13 was ascribed to the much enhanced π-electron donating ability of $\left[3_{2}\right](1,4) \mathrm{CP}$ than benzene itself, whereas the $\Delta E_{\mathrm{pc}}(0.05 \mathrm{~V})$ between $\mathbf{1 3}$ and $\mathbf{2 5}$ was ascribed to the combined effect of the enhanced π-electron donating ability of $\left[3_{2}\right](1,4) \mathrm{CP}$ in $\mathbf{1 3}$ and its preformed boatshaped geometry for η^{4}-bonding (Scheme 6).

On the second redox peaks P_{c}^{\prime} and P_{a}^{\prime} observed in the CVs of 13 and 21, the increase of the $I_{\mathrm{pa}}^{\prime} / I_{\mathrm{pc}}^{\prime}$ ratio with decreasing scan rates (Fig. 2) was an indication of the participation of the product of the irreversible chemical process such as an $E_{r} C_{i} E_{r}$ mechanism. However, we have no clear explanation of the possible species in this process at the present stage. In the case of the $\mathrm{Fe}(\mathrm{II})$ complexes 8-10, no clear redox peak was observed at the potential range between -1.0 and +1.25 V .

22; 64\%

23; 58\%

Scheme 4. Synthesis of $\mathrm{Os}(\mathrm{II})$ complexes of $\left[3_{n}\right]$ cyclophanes $\mathbf{2 1}-\mathbf{2 4}$ and their ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data of the aromatic protons $\left(270 \mathrm{MHz}, \mathrm{CD}{ }_{3} \mathrm{CN}\right) . \mathrm{The} \Delta \delta$ shows the complexation shift $\left[\Delta \delta=\delta\right.$ (free ligand in $\left.\mathrm{CD}_{3} \mathrm{CN}\right)-\delta$ (complex in $\mathrm{CD}_{3} \mathrm{CN}$).

3. Summary

The first $\mathrm{Fe}(\mathrm{II}), \mathrm{Ru}(\mathrm{II})$ and $\mathrm{Os}(\mathrm{II})$ complexes of $\left[3_{n}\right]$ CP were synthesized and characterized. Both of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR data of these complexes suggested that the chemical shifts of the aromatic protons and carbons of the complexes were more strongly influenced by the anisotropy effect of the metal than by the ring current effects of the aromatic rings. The shift of the E_{pc} value of the $\mathrm{Ru}(\mathrm{II})$ complex 13-16 to more negative potentials than that of the corresponding $\left[2_{n}\right]$ homolog indicated the much stronger π-electron donating ability and less deformed benzene ring of the $\left[3_{n}\right] \mathrm{CP}$ than the corresponding $\left[2_{n}\right] \mathrm{CP}$. An analysis of the redox properties of the $\mathrm{Ru}(\mathrm{II})$ and $\mathrm{Os}(\mathrm{II})$ complexes of $\left[3_{n}\right] \mathrm{CP}$ suggested that the $\operatorname{Os}(\operatorname{II})\left[3_{4}\right](1,2,4,5) \mathrm{CP}$ complex would be the most suitable subunit of an anticipated one-dimensional organometallic polymer. The synthetic and electrochemical study of $\mathrm{Ru}(\mathrm{II}) \mathrm{Ru}(\mathrm{II})$ and $\mathrm{Os}(\mathrm{II}) \mathrm{Os}(\mathrm{II})$ complexes of $\left[3_{4}\right](1,2,4,5) \mathrm{CP} \mathbf{5}$ is in progress and will be reported elsewhere.

4. Experimental details

4.1. General

${ }^{1} \mathrm{H}$-NMR spectra were recorded on JEOL JNM-EX 270 and 400 , and measured in $\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{CN}$, or DMSO- d_{6} with $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on JEOL JNM-EX 270 and 400 , and measured in CDCl_{3} or $\mathrm{CD}_{3} \mathrm{CN}$ with
$\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard. FAB MS were taken with a JEOL JMS-SX/SX 102A tandem mass spectrometer using m-nitrobenzyl alcohol as matrix. IR spectra were measured with HITACHI I-5040 FT-IR spectrometer. Elemental analyses were performed by the Service Centre of the Elementary Analysis of Organic Compounds affiliated with the Faculty of Science, Kyushu University.
The compounds $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2}\right]_{2} \mathbf{1 1}$ and $\left[\left(\eta^{6}-\right.\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Os}\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{Cl}_{2}\right] 20$ were prepared according to the Bennett [20] and the Mann [21] procedure, respectively. $\left[2_{2}\right](1,4) \mathrm{CP}$ was purchased from Tokyo Kasei Kogyo Co., Ltd. The $\mathrm{Fe}(\mathrm{II})$ and $\mathrm{Ru}(\mathrm{II})$ complexes 11 [12b] and 17 [11a] were prepared according to the literature procedures. [3_{2}] $(1,4) \mathrm{CP} 2$ [10d], [$\left.3_{3}\right](1,3,5) \mathrm{CP} 3$ [7b, 10c], [34] $(1,2,3,5) \mathrm{CP} 4$ [7b], [34](1,2,4,5)CP 5 [10e] were prepared by the reported procedures.

Cyclic voltammograms were recorded by a Fuso Model 311 polarographic analyzer, a Model 321B po-tential-sweep unit, and a Yokogawa Model 3655 digital recorder. A glassy carbon (GC) disk-electrode (Bioanalytical Systems Inc., 3 mm diameter), an $\mathrm{Ag} / 0.01 \mathrm{M}$ $\mathrm{AgNO}_{3} / 0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NClO}_{4}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ electrode and a platinum wire were used as the working electrode, the reference electrode and the counter electrode, respectively. All potential values were reported versus the reference electrode. The measurements were done in deoxygenated $\mathrm{CH}_{3} \mathrm{CN}$ solution containing 1 mM (1 $\mathrm{M}=1 \mathrm{~mol} \mathrm{dm}^{-3}$) complex as the redox species and 0.1 $\mathrm{M} \mathrm{Bu}_{4} \mathrm{NClO}_{4}$ as the supporting electrode. All the measurements were done at $25 \pm 0.1^{\circ} \mathrm{C}$.

Scheme 5. ${ }^{13} \mathrm{C}$-NMR data of aromatic carbons of the $\mathrm{Ru}(\mathrm{II})$ and $\mathrm{Os}(\mathrm{II})$ complexes $\mathbf{1 4} \mathbf{- 1 6}, \mathbf{1 9}, \mathbf{2 1}-\mathbf{2 4}$ (68 or $100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) as well as the free cyclophanes $2-5$ in CDCl_{3}. The $\Delta \delta$ shows the complexation shift $\left[\Delta \delta=\delta\right.$ (free ligand in $\left.\mathrm{CDCl}_{3}\right)-\delta$ (complex in $\mathrm{CD}_{3} \mathrm{CN}$).

4.2. Synthesis of Fe(II) complexes, $\boldsymbol{8}-\mathbf{1 0}$

$\operatorname{Bis}\left(\eta^{5}-\right.$ cyclopentadienyl) $\left(\eta^{6}, \eta^{6}-\left[3_{2}\right](1,4) \mathrm{CP}\right)$ diiron(II,II) bis(hexafluorophosphate) 8. A mixture of [3_{2}] (1,4)cyclophane 2 ($204 \mathrm{mg}, 0.864 \mathrm{mmol}$), ferrocene $(820 \mathrm{mg}, 4.40 \mathrm{mmol}), \mathrm{AlCl}_{3}(1.64 \mathrm{~g}, 12.3 \mathrm{mmol}), \mathrm{A} 1$ powder ($31 \mathrm{mg}, 1.15 \mathrm{mmol}$), and dry decalin (20 ml) was heated at $160^{\circ} \mathrm{C}$ for 2 h under an Ar atmosphere. The dark green reaction mixture was cooled in an ice

Fig. 1. Cyclic voltammograms of $1 \mathrm{mM} \mathbf{1 3 - 1 6}$ in $\mathrm{CH}_{3} \mathrm{CN} / 0.1 \mathrm{M}$ $\mathrm{Bu}_{4} \mathrm{NClO}_{4}$ observed at a GC electrode and potential scan rate is 0.1 $\mathrm{V} \mathrm{s}^{-1}$.
bath before dropwise addition of distilled water (20 ml). The content of the flask was transferred to a separatory funnel with water (40 ml) and $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{ml})$. The aqueous layer was separated, washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20$ ml), and filtered. To the filtrate was added a solution of $\mathrm{NH}_{4} \mathrm{PF}_{6}(1.8 \mathrm{~g}, 11.0 \mathrm{mmol})$ in water (3 ml). The precipitate was collected by filtration and dried in vacuo at

Fig. 2. Cyclic voltammograms of $1 \mathrm{mM} \mathbf{1 3}$ in $\mathrm{CH}_{3} \mathrm{CN} / 0.1 \mathrm{M}$ $\mathrm{Bu}_{4} \mathrm{NClO}_{4}$ observed at a GC electrode and various potential scan rates ($0.1-6.4 \mathrm{~V} \mathrm{~s}^{-1}$). In this Figure, the cathodic peak currents at $0.1,0.4$ and $1.6 \mathrm{~V} \mathrm{~s}^{-1}$ were normalized to that of $6.4 \mathrm{~V} \mathrm{~s}^{-1}$.

Fig. 3. Plots of the peak current ratio of P_{a} to $P_{\mathrm{c}}, I_{\mathrm{pa}} / I_{\mathrm{pc}}$ as a function of a potential scan rate for 13-15.
room temperature (r.t.) to give $\mathbf{8}$ as tan powder (554 ma, 85%). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (270 MHz , [D_{6}]acetone): $\delta=2.31$ $\left(\mathrm{m}, \quad 4 \mathrm{H}, \quad-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right) ; \quad 2.91 \quad(\mathrm{~m}, \quad 8 \mathrm{H}, \quad-$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right) ; 4.88(\mathrm{~s}, 10 \mathrm{H}, \mathrm{Cp}) ; 6.13(\mathrm{~s}, 8 \mathrm{H}, \mathrm{ArH})$. FAB MS: $m / z 623\left[\mathrm{M}^{+}-\mathrm{PF}_{6}^{-}\right]$. Found: C, 45.08; H 4.16. Calc. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~F}_{12} \mathrm{Fe}_{2} \mathrm{P}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$ (acetone): C , 45.06; H, 4.16.
$\operatorname{Bis}\left(\eta^{5}\right.$-cyclopentadienyl) $\left(\eta^{6}, \eta^{6}-\left[3_{3}\right](1,3,5)\right.$ cyclophane $)$ diiron(II,II) bis(hexafluorophosphate) 9: Yield 601 mg (99%), tan crystals (acetone-pentane). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (270 $\mathrm{MHz}, \quad\left[\mathrm{D}_{6}\right]$ acetone $): \quad \delta=2.2-3.2 \quad(\mathrm{~m}, \quad 18 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right) ; 4.81(\mathrm{~s}, 10 \mathrm{H}, \mathrm{Cp}) ; 6.09$ (s, $6 \mathrm{H}, \mathrm{ArH}$). FAB MS: $m / z: 663\left[\mathrm{M}^{+}-\mathrm{PF}_{6}^{-}\right]$. Found: C, 47.12; H, 4.71. Calc. for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~F}_{12} \mathrm{Fe}_{2} \mathrm{P}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$ (acetone) (866.3): C, 47.14; H, 4.65.
$\operatorname{Bis}\left(\eta^{5}-\right.$ cyclopentadienyl $)\left(\eta^{6}, \eta^{6}-\left[3_{4}\right](1,2,3,5)\right.$ cyclophane)diiron(II,II) bis(hexafluorophosphate) 10. Yield 227 mg (84%), tan crystals (acetone-pentane). ${ }^{1} \mathrm{H}-$ NMR (270 MHz, [D_{6}]acetone): $\delta=2.3-3.4$ (m, 24H,

Fig. 4. Cyclic voltammograms of $1 \mathrm{mM} \mathbf{1 3 - 1 6}$ in $\mathrm{CH}_{3} \mathrm{CN} / 0.1 \mathrm{M}$ $\mathrm{Bu}_{4} \mathrm{NClO}_{4}$ observed at a GC electrode and potential scan rate of 6.4 $\mathrm{V} \mathrm{s}^{-1}$.
$\left.-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right) ; 4.73$ (s, 10H, Cp); 6.12 (s, $4 \mathrm{H}, \mathrm{ArH}$). FAB MS: $m / z: 703\left[\mathrm{M}^{+}-\mathrm{PF}_{6}^{-}\right]$. Found: C, 49.05; H, 4.78. Calc. for $\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{~F}_{12} \mathrm{Fe}_{2} \mathrm{P}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$ (acetone) (906.4): C, 49.03; H, 4.89.

4.3. Synthesis of $R u(I I)$ complexes, 13-16

$\left(\eta^{6}\right.$ - Benzene) $\left[\eta^{6}-\left[3_{2}\right](1,4)\right.$ cyclophane $]$ ruthenium(II) bis(tetrafluoroborate) 13: $\left[\left(\eta^{6} \text {-Benzene) } \mathrm{RuCl}_{2}\right]_{2} 12\right.$ (195 $\mathrm{mg}, 0.391 \mathrm{mmol}), \mathrm{AgBF}_{4}(335 \mathrm{mg}, 1.72 \mathrm{mmol})$, and acetone (8 ml) were stirred at r.t. for 35 min under N_{2}. The precipitated AgCl was removed by filtration and washed with acetone (ca. 4 ml). To the filtrate was added $\left[3_{2}\right](1,4)$ cyclophane $2(173 \mathrm{mg}, 0.732 \mathrm{mmol})$ and $\mathrm{CF}_{3} \mathrm{COOH}(10 \mathrm{ml})$, and the mixture was refluxed for 35 min under N_{2}. The cooled reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$, and the resulting precipitate was collected by filtration, washed with $\mathrm{Et}_{2} \mathrm{O}$, and dried in vacuo at r.t. overnight to afford $13(275 \mathrm{mg}, 64 \%)$, faintly greenish yellow crystals $\left(\mathrm{CH}_{3} \mathrm{CN}-\mathrm{Et}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=2.24-2.83(\mathrm{~m}, 12 \mathrm{H}$, $\left.-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right) ; 6.32\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right) ; 6.50\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right)$; 6.99 (s, 4H, H_{c}). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(68 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta=$ 141.8; 132.3; 122.1; 95.0; 91.0; 34.7; 33.7; 31.6. IR $(\mathrm{KBr}) \tilde{v}\left(\mathrm{~cm}^{-1}\right) 3042(\mathrm{CH})$. FAB MS: $m / z: 503\left[\mathrm{M}^{+}{ }_{-}\right.$ BF_{4}^{-}]. Found: C, 48.01; $\mathrm{H}, ~ 4.35$. Calc. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{Ru} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (598.1): C, 48.19 ; H, 4.55.
(η^{6}-Benzene) $\left(\eta^{6}-\left[3_{3}\right](1,3,5)\right.$ cyclophane $)$ ruthenium(II) bis(tetrafluoroborate) 14: Yield 183 mg (79\%), faintly greenish yellow crystals $\left(\mathrm{CH}_{3} \mathrm{CN}-\mathrm{Et}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \quad \mathrm{CD}_{3} \mathrm{CN}\right): \delta=2.30-2.84(\mathrm{~m}, 18 \mathrm{H}$, $\left.-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right) ; 6.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right) ; 6.45\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right)$; $6.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(68 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta=$ 144.3; 132.7; 117.6; 94.8; 90.3; 35.1; 33.8; 30.7. IR (KBr) $\tilde{v}\left(\mathrm{~cm}^{-1}\right) 3088(\mathrm{CH})$. FAB MS: $m / z: 543\left[\mathrm{M}^{+}{ }^{-}\right.$ BF_{4}^{-}]. Found: C, 51.69; H, 4.79. Calc. for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{Ru}$ (629.2): C, 51.54; H, 4.81.
$\left(\eta^{6}\right.$ - Benzene) $\left(\eta^{6}-\left[3_{4}\right](1,2,3,5)\right.$ cyclophane $)$ ruthenium(II) bis(tetrafluoroborate) 15: Yield 151 mg (71\%), faintly greenish yellow crystals $\left(\mathrm{CH}_{3} \mathrm{CN}-\mathrm{Et}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H}-$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=2.2-3.5(\mathrm{~m}, 24 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right) ; 6.36\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right) ; 6.42\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right) ; 6.95$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta=143.3$; $142.4 ; 139.3 ; 133.7 ; 120.1 ; 114.1 ; 109.0 ; 94.9 ; 89.6 ; 34.7$; 33.2; 31.4; 31.2; 31.1; 30.3; 28.3; 26.6; 24.6. IR (KBr) \tilde{v} $\left(\mathrm{cm}^{-1}\right) 3032(\mathrm{CH})$. FAB MS: m/z: $583\left[\mathrm{M}^{+}-\mathrm{BF}_{4}^{-}\right]$. Found: C, 54.00; H, 5.13. Calc. for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{Ru}$ (669.3): C, 53.84; H, 5.12.
$\left(\eta^{6}\right.$-Benzene $)\left(\eta^{6}-\left[3_{4}\right](1,2,4,5)\right.$ cyclophane $)$ ruthenium (II) bis(tetrafluoroborate) 16: Yield 54.8 mg (54%), yellow powder $\left(\mathrm{CH}_{3} \mathrm{CN}-\mathrm{Et}_{2} \mathrm{O}\right)$. ${ }^{1} \mathrm{H}-\mathrm{NMR} \quad(270 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{CN}\right): \delta=2.2-3.5\left(\mathrm{~m}, 24 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right) ; 6.35$ $\left(\mathrm{s}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right) ; 6.58\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right) ; 7.10\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right) .{ }^{13} \mathrm{C}-$ NMR (68 MHz, $\mathrm{CD}_{3} \mathrm{CN}$): $\delta=140.9 ; 134.4 ; 115.0 ; 94.8$; 90.6; 31.9; 30.0; 29.6. IR (KBr) $\tilde{v}\left(\mathrm{~cm}^{-1}\right) 3083(\mathrm{CH})$.

Scheme 6. Reversible redox process, $\mathrm{Ru}(\mathrm{II}) \rightleftharpoons \mathrm{Ru}(0)$, of $\mathbf{2 5}$ and 13. The geometrical change is accompanied by the reduction of $\mathrm{Ru}(\mathrm{II})$ to $\mathrm{Ru}(0)$.

FAB MS: $m / z: 583\left[\mathrm{M}^{+}-\mathrm{BF}_{4}^{-}\right]$.Found: $\mathrm{C}, 53.74$; H , 5.17. Calc. for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{Ru}$ (669.3): C. 53.84; H, 5.12.

4.4. Synthesis of $R u(I I)$ complex, 19

$\left[\left(\eta^{6}-\left[3_{2}\right](1,4) \text { Cyclophane }\right) \mathrm{RuCl}_{2}\right]_{2}$ 18: Yield 247 mg , (76%), red crystals. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{DMSO}\left[\mathrm{D}_{6}\right]\right.$): $\delta=2.1-2.7\left(\mathrm{~m}, 24 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right) ; 5.33(\mathrm{~s}, 8 \mathrm{H}$, ArH); 6.90 (s, $8 \mathrm{H}, \mathrm{ArH}$). FAB MS: $m / z: 781\left[\mathrm{M}^{+}{ }_{-}\right.$ Cl^{-}] Found: C, 53.08; H, 5.06. Calc. for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{C}_{4} \mathrm{Ru}_{2}$ (816.7): C, 52.95; H, 4.94.
$\operatorname{Bis}\left(\eta^{6}-\left[3_{2}\right](1,4)\right.$ cyclophane $)$ ruthenium(II) bis(tetrafluoroborate) 19: Yield 322 mg (85%), faintly greenish yellow powder $\left(\mathrm{CH}_{3} \mathrm{NO}_{2}-\mathrm{Et}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(270 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{CN}\right): \delta=2.1-2.3\left(\mathrm{~m}, 8 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right) ; 2.4-$ $2.5\left(\mathrm{~m}, 8 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right) ; 2.7-2.8(\mathrm{~m}, 8 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-$); 5.97 (s, $8 \mathrm{H}, \mathrm{ArH}$); 6.91 (s, $8 \mathrm{H}, \mathrm{ArH}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(68 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta=141.6 ; 132.1 ; 119.3$; 90.3; 34.6; 32.9; 31.4. IR (KBr) $\tilde{v}\left(\mathrm{~cm}^{-1}\right) 3056(\mathrm{CH})$. FAB MS: $m / z: 661\left[\mathrm{M}^{+}-\mathrm{BF}_{4}^{-}\right]$. Found: C, 57.35; H, 5.37. Calc. for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{Ru} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (756.4): C , 57.17; H, 5.46.

4.5. Synthesis of $O s(I I)$ complexes, 21-24

(η^{6}-Benzene) $\left[\eta^{6}-\left[3_{2}\right](1,4)\right.$ cyclophane $]$ osmium(II) bis(hexafluorophosphate) 21: [(η^{6} benzene) $\mathrm{Os}(\mathrm{II})\left(\mathrm{CH}_{3}-\right.$

Fig. 5. The theoretical plot of the peak current ratio of P_{a} to P_{c}, $I_{\mathrm{pa}} / I_{\mathrm{pc}}$, as a function of $\log k_{f} \tau$, in which τ is the time in seconds between $E_{1 / 2}$ and the switching potential. The best fitted $I_{\mathrm{pa}} / I_{\mathrm{pc}}$ curve is obtained at the k_{f} values of $3.4,1.2,1.6$ and $0.15 \mathrm{~s}^{-1}$ for $\mathbf{1 3 - 1 6}$, respectively.
$\mathrm{CN}) \mathrm{Cl}_{2}$] 20 ($54.6 \mathrm{mg}, 0.14 \mathrm{mmol}$), AgPF_{6} ($80 \mathrm{mg}, 0.32$ $\mathrm{mmol})$, and acetone $(15 \mathrm{ml})$ were stirred at r.t. for 20 min. The precipitated AgCl was removed by filtration and washed with acetone (ca. 4 ml). The acetone was removed by rotary evaporation, then $\left[3_{2}\right](1,4)$ cyclophane $2(62.7 \mathrm{mg}, 0.26 \mathrm{mmol})$ and $\mathrm{CF}_{3} \mathrm{COOH}(5 \mathrm{ml})$ were added and the mixture was refluxed for 2.5 h under N_{2}. The cooled reaction mixture was filtered into an aqueous solution of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ to give a white precipitate. The product was collected by filtration, and recrystallized from acetone-diethyl ether to yield 21 (96.9 $\mathrm{mg}, 84 \%)$ as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}(270 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{CN}\right): \delta=2.26-2.91\left(\mathrm{~m}, 12 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)$; $6.60\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right) ; 6.68\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right) ; 7.07\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($68 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=141.4 ; 132.5 ; 117.5$; 88.2; 85.2; 34.6; 33.6; 30.7. IR (KBr) $\tilde{v}\left(\mathrm{~cm}^{-1}\right) 3092$ (CH). FAB MS: $m / z: 651\left[\mathrm{M}^{+}-\mathrm{PF}_{6}^{-}\right]$. Found: C, 36.31; H, 3.36. Calc. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~F}_{12} \mathrm{OsP}_{2}$ (794.6): C , 36.28; H, 3.30.
$\left(\eta^{6}\right.$-Benzene $)\left(\eta^{6}-\left[3_{3}\right](1,3,5)\right.$ cyclophane)osmium(II) bis(hexafluorophosphate) 22: Yield 74.6 mg (64%), white solid (acetone- $\mathrm{Et}_{2} \mathrm{O}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(270 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{CN}\right): \delta=2.31-2.91\left(\mathrm{~m}, 18 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)$; $6.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right) ; 6.59\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right) ; 6.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right.$): $\delta=144.1 ; 132.8 ; 112.9$; 88.0; 85.4; 35.1; 33.7; 30.0. IR (KBr) $\tilde{v}\left(\mathrm{~cm}^{-1}\right) 3092$ (CH). FAB MS: m/z: $691\left[\mathrm{M}^{+}-\mathrm{PF}_{6}^{-}\right]$. Found: C,

Fig. 6. Cyclic voltammograms of $1 \mathrm{mM} 21-\mathbf{2 4}$ in $\mathrm{CH}_{3} \mathrm{CN} / 0.1 \mathrm{M}$ $\mathrm{Bu}_{4} \mathrm{NClO}_{4}$ observed at a GC electrode and potential scan rate of 0.1 $\mathrm{V} \mathrm{s}{ }^{-1}$.

Fig. 7. Cyclic voltammograms of $1 \mathrm{mM} 21-\mathbf{2 4}$ in $\mathrm{CH}_{3} \mathrm{CN} / 0.1 \mathrm{M}$ $\mathrm{Bu}_{4} \mathrm{NClO}_{4}$ observed at a GC electrode and potential scan rate of 6.4 $\mathrm{V} \mathrm{s}{ }^{-1}$.
38.91; H. 3.67. Calc. for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~F}_{12} \mathrm{OsP}_{2}$ (834.7): C. 38.85; H, 3.62.
(η^{6}-Benzene) $\left(\eta^{6}-\left[3_{4}\right](1,2,3,5)\right.$ cyclophane $)$ osmium(II) bis(hexafluorophosphate) 23: Yield $70.8 \mathrm{mg}(58 \%)$, grey solid (acetone- $\mathrm{Et}_{2} \mathrm{O}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right.$): $\delta=2.36-3.27\left(\mathrm{~m}, 24 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right) ; 6.52(\mathrm{~s}, 4 \mathrm{H}$, H_{a}); $6.76\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right) ; 7.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right) .{ }^{13} \mathrm{C}$-NMR (68 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=143.1$; 142.0; 138.7; 133.7; 115.9; 108.4; 104.8; 88.0; 84.8; 34.7; 33.2; 31.4; 31.2; 31.1; 30.3; 28.3; 26.6; 24.6. IR (KBr) $\tilde{v}\left(\mathrm{~cm}^{-1}\right) 3098$ (CH). FAB MS: $m / z: 731\left[\mathrm{M}^{+}-\mathrm{PF}_{6}^{-}\right]$. Found: C, 41.17; H, 4.07. Calc. for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~F}_{12} \mathrm{OsP}_{2}$ (874.7): C, 41.19; H, 3.92.
(η^{6}-Benzene) $\left(\eta^{6}-\left[3_{4}\right](1,2,4,5)\right.$ cyclophane)osmium(II) bis(hexafluorophosphate) 24: Yield $69.1 \mathrm{mg}(58 \%)$, yellow micro crystals $\left(\mathrm{CH}_{3} \mathrm{CN}-\mathrm{Et}_{2} \mathrm{O}\right)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(270 \mathrm{MHz}, \quad \mathrm{CD}_{3} \mathrm{CN}\right): \quad \delta=2.47-3.14 \quad(\mathrm{~m}, \quad 24 \mathrm{H}$, $\left.-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)$; $6.52\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right) ; 6.95\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right)$; $7.20\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right.$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(68 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right.$): $\delta=$ 140.4; 134.5; 110.7; 87.8; 82.0; 30.9; 29.9; 29.4. IR $(\mathrm{KBr}) \tilde{v}\left(\mathrm{~cm}^{-1}\right) 3098(\mathrm{CH})$. FAB MS: $m / z: 731\left[\mathrm{M}^{+}{ }^{-}\right.$

Fig. 8. Cyclic voltammograms of $1 \mathrm{mM} \mathbf{1 3}, \mathbf{1 9}$ and $\mathbf{2 5}$ in $\mathrm{CH}_{3} \mathrm{CN} / 0.1$ M Bu NClO_{4} observed at a GC electrode and potential scan rate of $0.1 \mathrm{~V} \mathrm{~s}^{-1}$.
PF_{6}^{-}]. Found: C, 41.21; H, 3.96. Calc. for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~F}_{12} \mathrm{OsP}_{2}$ (874.7): C, 41.19; H, 3.92.

5. Supplementary material available

Part of the electrochemical data of the $\mathrm{Ru}(\mathrm{II})$ complexes, Figs. 2, 3, 5 and 8 are available as supplementary material.

Acknowledgements

We gratefully acknowledge financial support by the Grant-in-Aid for Scientific Research on Priority Area of New Development of Organic Electrochemistry (no. 07215267) and in part by the Grant-in-Aid for Scientific Research (B) (no. 09440221) and Priority Area (A) (no. 10146237) from the Ministry of Education, Science, Sports, and Culture of Japan. T. Shinmyozu sincerely thanks the financial support by the Izumi Science and Technology Foundation and KAWASAKI STEEL 21st Century Foundation, Japan.

References

[1] For a review of transition metal complexes of cyclophanes: J. Schulz, F. Vögtle, in: E. Weber (Ed.), Topics in Current Chemistry vol. 115, Springer-Verlag, Berlin, 1995, p. 41-86.
[2] (a) F.G.N. Cloke, M.L.H. Green, J. Chem. Soc. Dalton Trans. (1981) 1938. (b) F.G.N. Cloke, M.F. Lappert, G.A. Lawless, A.C. Swain, J. Chem. Soc. Chem. Commun. (1987) 1667. (c) J.G. Brennan, F.G.N. Cloke, A.A. Sameh, A. Zalkin, J. Chem. Soc. Chem. Commun. (1987) 1668. (d) D.M. Anderson, F.G.N. Cloke, P.A. Cox, N. Edelstein, J.C. Green, T. Pang, A.A. Sameh, G. Shalimoff, J. Chem. Soc. Chem. Commun. (1989) 53. (e) F.G.N. Cloke, K. Khan, R.N. Perutz, J. Chem. Soc. Chem. Commun. (1991) 1372.
[3] T. Shinmyozu, T. Inazu, T. Yoshino, Chem. Lett. (1977) 1347.
[4] D.J. Cram, R.H. Bauer, J. Am. Chem. Soc. 81 (1959) 5971.
[5] (a) C.J. Brown, J. Chem. Soc. (1953) 3265. (b) P.K. Gantzel, K.N. Trueblood, Acta Crystallogr. 18 (1965) 968.
[6] (a) Y. Sekine, M. Brown, V. Boekelheide, J. Am. Chem. Soc. 101 (1979) 3126. (b) Y. Sekine, V. Boekelheide, J. Am. Chem. Soc. 103 (1981) 1777.
[7] (a) Y. Sakamoto, N. Miyoshi, T. Shinmyozu, Angew. Chem. Int. Ed. Engl. 35 (1996) 549. (b) Y. Sakamoto, N. Miyoshi, M. Hirakida, S. Kusumoto, H. Kawase, J.M. Rudzinski, T. Shinmyozu, J. Am. Chem. Soc. 118 (1996) 12267. (c) Y. Sakamoto, T. Shinmyozu, Recent Research Developments in Pure \& Applied Chemistry, Transworld Research Network, 1998 (in press).
[8] The X-ray structural analysis of the CT complex of [3_{6}]cyclophane $\mathbf{1}$ with tetracyanoquinodimethane (TCNQ) will be reported elsewhere.
[9] The semiempirical MO calculations (PM3) were performed with MOPAC 93 program, graphically facilitated by ANCHOR $I^{\text {TM }}$ from Fujitsu Limited and Kureha Chemical Industries. (a) J.J.P. Stewart, J. Comput. Chem. 10 (1989) 209. (b) M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Stewart, J. Am. Chem. Soc. 107 (1985) 3902. (c) J.J.P. Stewart, Fujitsu Limited, Tokyo, Japan, 1993.
[10] (a) K. Kurosawa, M. Suenaga, T. Inazu, T. Yoshino, Tetrahedron Lett. 23 (1982) 5335. (b) T. Shinmyozu, Y. Hirai, T. Inazu, J. Org. Chem. 51 (1986) 1551. (c) T. Meno, K. Sako, M. Suenaga, M. Mouri, T. Shinmyozu, T. Inazu, H. Takemura, Can. J. Chem. 68 (1990) 440. (d) K. Sako, T. Meno, H. Takemura, T. Shinmyozu, T. Inazu, Chem. Ber. 123 (1990) 639. (e) T. Shinmyozu, S. Kusumoto, S. Nomura, H. Kawase, T. Inazu, Chem. Ber. 126 (1993) 1815. (f) T. Shinmyozu, M. Hirakida, S. Kusumoto, M. Tomonou, T. Inazu, J.M. Rudzinski, Chem. Lett. (1994) 669. (g) T. Shinmyozu, T. Hirakawa, K. Sako, G. Wen, H. Takemura, J.M. Rudzinski, Liebigs Ann. (1996) 205.
[11] (a) E.D. Laganis, R.G. Finke, V. Boekelheide, Tetrahedron Lett. 21 (1980) 4405. (b) E.D. Laganis, R.H. Voegeli, R.T. Swann, R.G. Finke, H. Hopf, V. Boekelheide, Organometallics 1 (1982) 1415. (c) W.D. Rohrbach, V. Boekelheide, J. Org. Chem. 48 (1983) 3673. (d) R.G. Finke, R.H. Voegeli, E.D. Laganis, V. Boekelheide, Organometallics 2 (1983) 347. (e) R.T. Swann, A.W. Hanson, V. Boekelheide, J. Am. Chem. Soc. 106 (1984) 818. (f) R.T. Swann, A.W. Hanson, V. Boekelheide, J. Am. Chem. Soc. 108 (1986) 3324. (g) R.H. Voegeli, H.C. Kang, R.G. Finke, V. Boekelheide, J. Am. Chem. Soc. 108 (1986) 7010. (h) H.C. Kang, K.-D. Plitzko, V. Boekelheide, J. Organomet. Chem. 321 (1987) 79. (i) K.-D. Plitzko, B. Rapko, B. Gollas, G. Wehrle, T. Weakley, D.T. Pierce, W.E. Geiger Jr., R.C. Haddon, V. Boekelheide, J. Am. Chem. Soc. 112 (1990) 6545. (j) K.-D. Plitzko, G. Wehrle, B. Gollas, B. Rapko, J. Dannheim, V. Boekelheide, J. Am. Chem. Soc. 112 (1990) 6556.
[12] (a) R.T. Swann, V. Boekelheide, J. Organomet. Chem. 231 (1982) 143. (b) E.D. Laganis, R.G. Finke, V. Boekelheide, Proc. Natl. Acad. Sci. USA 78 (1981) 2657. (b) P.F.T. Schirch, V. Boekelheide, J. Am. Chem. Soc. 103 (1981) 6873.
[13] A.R. Koray, J. Organomet. Chem. 212 (1981) 233.
[14] (a) J. Elzinga, M. Rosenblum. Tetrahedron Lett. 23 (1982) 1535. (b) J. Elzinga, M. Rosenblum, Organometallics 2 (1983) 1214.
[15] (a) M.R.J. Elsegood, D.A. Tocher, J. Organomet. Chem. 391 (1990) 239. (b) M.R. Elsegood, D.A. Tocher, Polyhedron 14 (1995) 3147.
[16] (a) J.A. Bandy, M.L.H. Green, D. O’Hare, K. Prout, J. Chem. Soc. Chem. Commun. (1984) 1402. (b) J.A. Bandy, M.L.H. Green, D. O’Hare, K. Prout, J. Chem. Soc. Dalton Trans. (1986) 2477.
[17] (a) T.P. Gill, K.R. Mann, Inorg. Chem. 19 (1980) 3007. (b) T.P. Gill, K.R. Mann, J. Organomet. Chem. 216 (1981) 65. (c) J.L. Schrenk, A.M. McNair, F.B. McCormick, K.R. Mann, Inorg. Chem. 25 (1986) 3501.
[18] A.N. Nesmeyanov, N.A. Vol'kenau, I.N. Bolesova, Dokl. Akad. Nauk. SSSR 149 (1963) 615.
[19] C.C. Lee, B.R. Steele, R.G. Sutherland, J. Organomet. Chem. 186 (1980) 265.
[20] (a) M.A. Bennett, A.K. Smith, J. Chem. Soc. Dalton Trans. (1974) 233. (b) M.A. Bennett, T.W. Matheson, J. Organomet. Chem. 175 (1979) 87.
[21] (a) D.A. Freedman, J.R. Matachek, K.R. Mann, Inorg. Chem. 32 (1993) 1078. (b) D.A. Freedman, D.J. Magneson, K.R. Mann, Inorg. Chem. 34 (1995) 2617.
[22] F.P. Dwyer, J.W. Hogarth, Inorg. Synth. 5 (1957) 206.
[23] T. Miura, T. Horishita, N. Mori, J. Organomet. Chem. 333 (1987) 387 and references therein.
[24] D.T. Pierce, W.E. Geiger, J. Am. Chem. Soc. 111 (1989) 7636.
[25] R.S. Nicholson, I. Shain, Anal. Chem. 36 (1964) 706.
[26] Figure 5 shows the theoretical plot of the $I_{\mathrm{pa}} / I_{\mathrm{pc}}$ as a function of rate parameter $k_{f} \tau$, in which τ is the time in seconds between $E_{1 / 2}$ and the switching potential. The best fitted $I_{\mathrm{pa}} / I_{\mathrm{pc}}$ curve was obtained with the k_{f} values of $3.4,1.2,1.6$ and $0.15 \mathrm{~s}^{-1}$ for 13-16, respectively.
[27] A.J. Bard, R.L. Faulkner, Electrochemical Methods, Fundamentals and Applications, Wiley, New York, 1980, pp. 461-465.
[28] W. Sentou, T. Satou, M. Yasutake, C. Lim, Y, Sakamoto, T. Itoh, T. Shinmyozu (accepted for publication).
[29] (a) E.O. Fischer, Ch. Elschenbroich, Chem. Ber. 103 (1970) 162. (b) M. Darensbourg, E.L. Muetterties, J. Am. Chem. Soc. 100 (1978) 7425. (b) E.L. Muetterties, J.R. Bleele., Acc. Chem. Res. 12 (1979) 324. (c) G. Huttner, S. Lange, Acta Crystallogr. B28 (1972) 2049.

[^0]: π-Arene metal complexes, Part 1 .

 * Corresponding author. Tel.: + 81-92-641-2716; fax: + 81-92-6412735.
 ${ }^{1}$ Present address: Toyota College of Technology, General Education, Eisei-cho 2-1, Toyota 471, Japan.

